EPON OLT 1.25Gbps 1000Base-PX20 Tx1490/Rx1310nm DDMI

SLEP-1143-P

Overview

The SLEP-1143-P transceiver is the high performance module for single fiber by using 1490nm continuous-mode transmitter and 1310nm burst-mode receiver. It is optical line terminal (OLT) for IEEE Std 802.3ah™ -2004 1000BASE-PX20. The optical transceiver is compliant with the Small Form-Factor Pluggable (SFP) Multi-Source Agreement (MSA).

The transmitter section uses a 1490nm DFB LD with automatic power control (APC) function and temperature compensation circuitry to ensure stable extinction ratio over all operating temperature range, and is Class I laser compliant IEC825 and CDRH standards The receiver has a hermetically packaged APD-TIA (trans-impedance amplifier) pre-amplifier and a limiting amplifier with LVPECL compatible differential outputs.

Features

- ◆ Single Fiber with single mode SC receptacle
- ◆ 1490nm continuous-mode 1.25G/s transmitter with DFB laser
- ♦ 1310nm burst-mode 1.25G/s receiver with APD-TIA
- ♦ Single 3.3V power supply
- ♦ LVPECL compatible data input /output
- ♦ Burst mode received signal strength indication output
- ♦ Support more than 24dB dynamic range
- ♦ Complies with IEEE Std 802.3ah™ 1000BASE-PX20
- ♦ Digital diagnostic interface compliant with SFF-8472
- ◆ Complies with RoHS directive (2002/95/EC)
- ♦ Operating case temperature:
- ♦ Standard: 0 to +70°C

Applications

◆ Gigabit Ethernet Passive Optical Network (EPON) OLT

Ordering Information

Part Number	Product Description
SLEP-1143-P	EPON OLT Tx1490/Rx1310nm 1.25Gbps/1.25Gbps 1000BASE-PX20 0ºC ~+70ºC

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	Tst	-40	+85	°C	-
Operating Case Temperature	Tc	0	70	°C	-
Operating Humidity	RH	5	90	%	Non-condensing
Input Voltage	-	GND	Vcc	V	-
Power Supply Voltage	Vcc-Vee	0	3.6	V	-

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Tc	0	-	+70	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		Icc	-	-	500	mA

Optical and Electrical Characteristics

Para	meter	Symbol	Min	Typical	Max	Unit	Notes
	Transmitter						
Data	a Rate			1.25		Gb/S	
Centre W	/avelength	λς	1480		1500	nm	
Spectra	al Width	Δλ		0.4	1	nm	
Side Mode Su	ppression Ratio	SMSR	30			dB	
Average Outp	Average Output Power(BOL)		3		7	dBm	1
Average Outp	Average Output Power(EOL)		2		7	dBm	1
Extincti	Extinction Ratio		9			dB	
_	Average Launch Power-OFF Transmitter				-40	dBm	
Optical Ey	ye Diagram	Compliant with	IEEE802.3ah-200	04 PX20			
Optical Rise/Fall	Time (20%~80%)	tr/tf			260	ps	
Data Input Swing Differential		V_{IN}	200		2400	mV	2
Input Differential Impedance		Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
I V DISQUIE	Enable		0		0.8	V	

TV Flt	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
			Receive	r			
Data	Rate			1.25		Gb/S	
Centre W	avelength/	λς	1260		1360	nm	
Receiver	Sensitivity	Sen			-28	dBm	3
Receiver	Overload	Sat	-6			dBm	3
Receiver Burst	Dynamic Range		22			dB	
Receiver I	Receiver Reflectance				-20	dB	
Data Output	Voltage - High	VOH	VccR -1.05		VccR - 0.85	V	4
Data Output	Voltage - Low	VOL	VccR -1.84		VccR - 1.60	V	4
LOS De-a	ssert Level	LOS_D			-29	dBm	
LOS Ass	ert Level	LOS_A	-45			dBm	
LOS Detec	t Hysteresis		1			dBm	
LOS_D	et High		2.0		VCC	V	
LOS_D	Oet Low		0		0.8	V	
LOS De-a	ssert Time	LOS_D T			500	ns	
LOS Ass	sert Time	LOS_A T			500	ns	
Reciever Power	DDM (RSSI) Error	RXDDM			+/-3	dBm	

Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^7 -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-10}$.
- 4. Internally DC-coupled.

Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	2 to 7	dBm	±3dB	Internal / External
RX Power	-28 to -6	dBm	±3dB	Internal / External

Timing Characteristics for Digital RSSI

Parameter	Symbol	Min.	Typical	Max	Units
Trigger delay	Td	300			ns
Sample time	Ts	600			ns
Internal I2C Delay	TI2C			500	us
Digital RSSI		Figure 1			

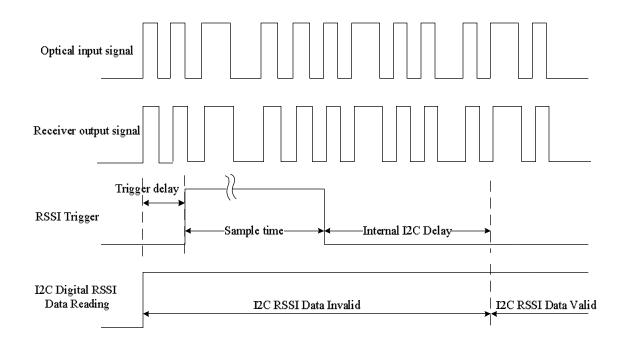


Figure 1. Digital RSSI Timing

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

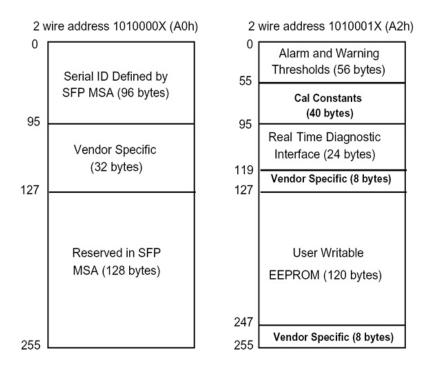


Figure 2. digital diagnostic memory map

Pin Definitions

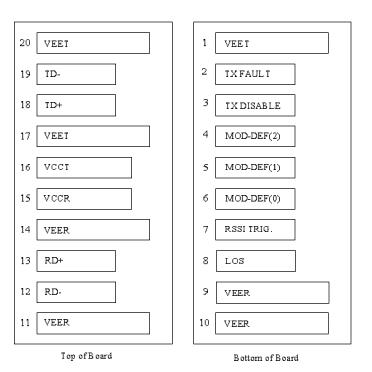


Figure 3. Pin Diagram

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V_{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	RSSI TRIG.	CMOS input. Assert high at the beginning of the monitored burst package,at least 600ns in	3	Note 4
8	LOS	Burst signal detect	3	Note 5
9	V _{EER} .	Receiver ground	1	
10	V_{EER}	Receiver ground	1	
11	V_{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 6
13	RD+	Received Data Out	3	Note6
14	V_{EER}	Receiver ground	1	
15	V_{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V_{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 7
19	TD-	Inv. Transmit Data In	3	Note 7
20	V _{EET}	Transmitter Ground	1	

Notes:

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k^{\sim}10k\Omega$ resistor. It's states are:

Low (0 to 0.8V) : Transmitter on (>0.8V, < 2.0V) : Undefined

High (2.0 to 3.465V) : Transmitter Disabled
Open : Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present
 - Mod-Def 1 is the clock line of two wire serial interface for serial ID
 - Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) RSSI TRIG is a CMOS input. Assert high after 300ns delay time of the beginning of the monitored burst package, at least 600ns.
- 5) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K 10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 6) RD-/+: These are the differential receiver outputs. They are internally DC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 7) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

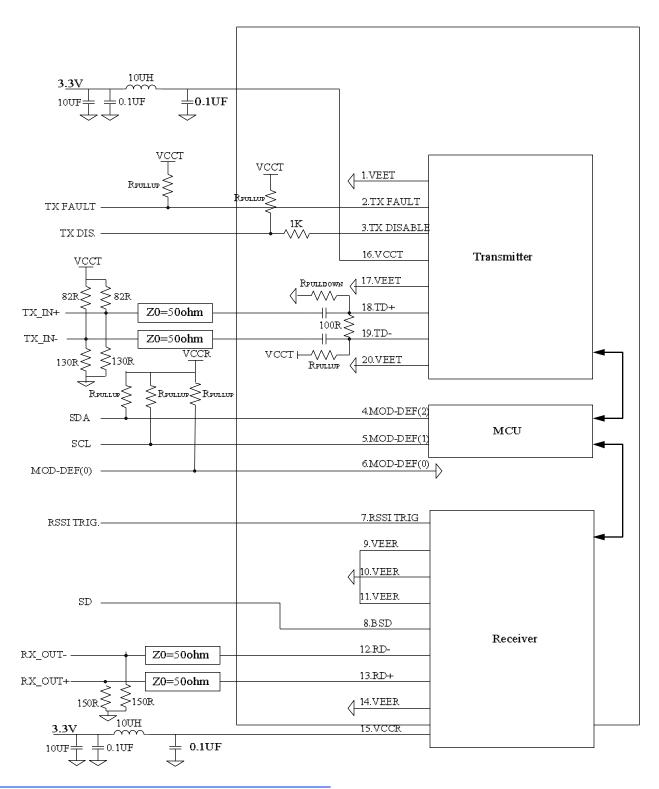


Figure 4. Recommended Interface Circuit

Mechanical Dimensions

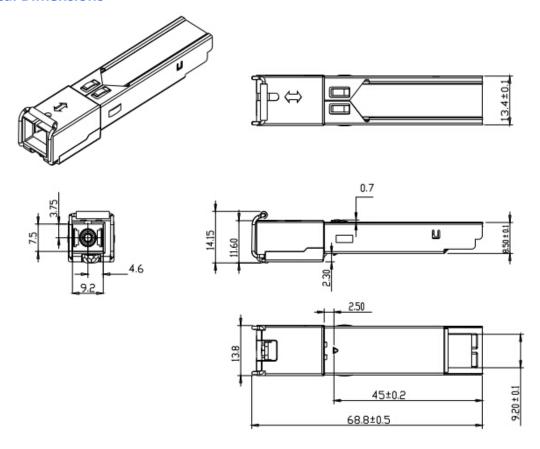


Figure 5. Mechanical Specification

References

- 1. Complies with IEEE Std 802.3ah™-2004 1000BASE-PX20;
- 2. Digital diagnostic interface compliant with SFF-8472;
- 3. Complies with RoHS directive (2002/95/EC).

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to sales@sourcelight.com.cn