

Sourcelight

GPON OLT 2.5/1.25Gbps Class B+ Tx1490/Rx1310nm DDMI

SLGP-2143-B

Overview

The SLGP-2143-B transceiver is the high performance module for single fiber by using 1490nm continuous-mode transmitter and 1310nm burst-mode receiver. It is optical line terminal (OLT) for ITU-T G984.2.

The optical transceiver is compliant with the Small Form-Factor Pluggable (SFP) Multi-Source Agreement (MSA). The transmitter section uses a 1490nm DFB LD with automatic power control (APC) function and temperature compensation circuitry to ensure stable extinction ratio over all operating temperature range, and is Class I laser compliant IEC825 and CDRH standard. The receiver has a hermetically packaged burst-mode APD-TIA (trans-impedance amplifier) pre-amplifier and a burst-mode limiting amplifier with LVPECL compatible differential outputs.

Features

- 1490nm continuous-mode transmitter with DFB laser
- 1310nm burst-mode receiver with APD-TIA
- Single 3.3V power supply
- Reset burst-mode receiver design
- Burst mode signal detect output which is LVTTL compatible.
- Burst mode received signal strength indication output
- 20Km Reach 28dB link budget
- Complies with ITU-T G984.2 Class B+
- Digital diagnostic interface compliant with SFF-8472
- Complies with RoHS directive (2002/95/EC)
- Operating case temperature: Standard : 0 to +70°C

Applications

• Gigabit Passive Optical Networks (G-PON) – OLT side

Ordering Information

Part Number	Product Description
SLGP-2143-B	GPON OLT 2.5G/1.25Gbps Tx1490/Rx1310nm DDMI Class B+ 0℃ ~ +70℃

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	Tst	-40	+85	°C	-
Operating Case Temperature	Тс	0	70	°C	-
Operating Humidity	RH	5	90	%	Non-condensing
Input Voltage	-	GND	Vcc	V	-
Power Supply Voltage	Vcc-Vee	0	3.6	V	-

Recommended Operating Conditions

Table 2 - Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Тс	0	-	+70	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		lcc	-	-	500	mA

Optical and Electrical Characteristics

Parai	meter	Symbol	Min	Typical	Max	Unit	Notes
			Transmitt	er			
Data	Rate			2.5		Gb/S	
Centre W	avelength	λc	1480		1500	nm	
Spectra	l Width	Δλ		0.4	1	nm	
Side Mode Suppression Ratio		SMSR	30			dB	
Average Output Power		Pout	1.5		5	dBm	1
Extinction Ratio		ER	10			dB	
Average Launch Power-OFF Transmitter		Poff			-40	dBm	
Optical Ey	e Diagram			Compliant w	ith G984.2		
Optical Rise/Fall	Time (20%~80%)	tr/tf			160	ps	
Data Input Swing Differential		V _{IN}	200		2400	mV	2
Input Differential Impedance		Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
	Enable		0		0.8	V	

TV Fault	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
			Receive	r			
Data	Rate			1.25		Gb/S	
Centre W	avelength	λς	1260		1360	nm	
Receiver	Sensitivity	Sen			-28	dBm	3
Receiver Overload		Sat	-8			dBm	3
Receiver CID Tolerance			72			Bit	
Receiver Reflectance					-20	dB	
Data Output Voltage - High		VOH	VccR -1.05		VccR – 0.85	V	4
Data Output	Data Output Voltage - Low		VccR -1.84		VccR - 1.60	V	4
Burst Deteo	ct De-assert	BSD_D	-45			dBm	
Burst Det	ect Assert	BSD_A			-29	dBm	
Burst Detec	t Hysteresis		1		6	dBm	
BRST_D	Det High	V_DET H	2.4		VCC	V	
BRST_E	Det Low	V_DETL	0		0.4	V	
Reciever Power	DDM (RSSI) Error	RXDDM			+/-3	dBm	5

Notes:

1. The optical power is launched into SMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 2^{23} -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-10}$.

4. Internally DC-coupled.

5. RSSI DDM working range is between -8 to -28 dBm. RSSI DDM accuracy is better than +/- 3dB for input power levels between -12 to -28 dBm, the accuracy reduces to +/- 5 dBm for other input power levels.

Diagnostics

Table 5 – Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	1.5 to 5	dBm	±3dB	Internal / External
RX Power	-28 to -8	dBm	±3dB	Internal / External

Timing Characteristics for Digital RSSI

Figure1. Digital RSSI Timing

Timing Characteristics for Reset

Table 6 – Timing Characteristics for RESET

Parameter	Symbol	Min.	ТҮР	MAX	UNITS
RESET Input Signal (RESET+)	Reset		LVTTL		
RESET Signal Width	Tr		24		Bits
Guard time	Tg	32			Bits
Preamble time	Тр	44			Bits
Reset Delay	∆t			Tg - Tr	Bits
Burst Signal Detect On	T_BSD_On			20	ns
Burst Signal Detect Off	T_BSD_Off			20	ns
IRESET Timing			Figure 2		

Figure2. Reset Timing

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

2 wire address 1010000X (A0h)

Figure3. digital diagnostic memory map

Pin Definitions

Top of Board

Bottom of Board

Figure4. Pin Diagram

www.sourcelight.com.cn

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	RESET	LVTTL input. Assert "Reset" high at the end of previous burst, 16 bits in duration	3	Note 4
8	BSD	Burst signal detect	3	Note 5
9	RSSI TRIG.	CMOS input. Assert high at the beginning of the monitored burst package, at least 300ns in duration	3	Note 6
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 7
13	RD+	Received Data Out	3	Note 7
14	V _{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 8
19	TD-	Inv. Transmit Data In	3	Note 8
20	V _{EET}	Transmitter Ground	1	

Notes:

- 1) TX Fault is an open collector output, which should be pulled up with a $4.7k^{-10k\Omega}$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k^{-10k\Omega}$ resistor. It's states are:

Low (0 to 0.8V)	: Transmitter on
(>0.8V, < 2.0V)	: Undefined
High (2.0 to 3.465V)	: Transmitter Disabled
Open	: Transmitter Disabled

3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k^{-10k\Omega}$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID

Mod-Def 2 is the data line of two wire serial interface for serial ID

- 4) RESET is a LVTTL input. When the previous burst signal package is end, the host will give a "high" RESET to restore the state of LA. Internal pull-down 10K resistor to GND.
- 5) BSD can track the state of receiving burst signal. Logic 0 indicates loss of signal; Logic1 indicates receiving signal packages.
- 6) RSSI TRIG is a CMOS input. Assert high after 30ns delay time of the beginning of the monitored burst package, at least 300ns in duration.
- 7) RD-/+: These are the differential receiver outputs. They are internally DC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 8) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

Figure 5. Recommended Interface Circuit

Mechanical Dimensions

Figure6. Mechanical Specifications

References

- 1. Complies with ITU-T G984.2 Class B+
- 2. Digital diagnostic interface compliant with SFF-8472
- 3. Complies with RoHS directive (2002/95/EC)

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to <u>sales@sourcelight.com.cn</u>