40Gbps QSFP+ 850nm 100M SR4

SLQS-40G-SR4

Overview

The Sourcelight Technology SLQS-40G-SR4 is a Four-Channel, Pluggable, Parallel, and Fiber-Optic QSFP+ Transceiver for 40Gigabit Ethernet Applications. These transceivers are a high performance module for short-range multi-lane data communication and interconnect applications. It integrates four data lanes in each direction with 40Gbps bandwidth. Each lane can operate at 10.3125Gbps up to 100 m using OM3 fiber or 150 m using OM4 fiber.

These modules are designed to operate over multimode fiber systems using a nominal wavelength of 850nm. The electrical interface uses a 38 contact edge type connector. The optical interface uses a 12 fiber MTP (MPO) connector. This module incorporates Sourcelight Technology proven circuit and VCSEL technology to provide reliable long life, high performance, and consistent service.

Features

- ♦ 4 channels full-duplex transceiver modules
- ◆ Transmission data rate up to 10.5Gbps per channel
- ♦ 4 channels 850nm VCSEL array
- ♦ 4 channels PIN photo detector array
- ♦ Low power consumption <1.5W
- ♦ Hot Pluggable QSFP form factor
- Maximum link length of 100m on OM3 Multimode
 Fiber (MMF) and 150m on OM4 MMF
- ♦ Single MPO connector receptacle
- ♦ Built-in digital diagnostic functions
- ◆ Operating case temperature 0°C to +70°C
- ♦ 3.3V power supply voltage
- ◆ RoHS 6 compliant (lead free)

Applications

- ♦ 40GBASE-SR4 40G Ethernet
- ◆ Datacom/Telecom switch & router connections
- ◆ Data Aggregation and Backplane Applications
- ◆ Proprietary Protocol and Density Applications
- ♦ Infiniband transmission at 4ch SDR, DDR and QDR

Ordering Information

Part Number	Product Description
SLQS-40G-SR4	QSFP+ SR4 100m on OM3 Multimode Fiber (MMF) and 150m on OM4 MMF

Module Block Diagram

QSFP+ SR4 is one kind of parallel transceiver. VCSEL and PIN array package is key technique, through I2C system can contact with module.

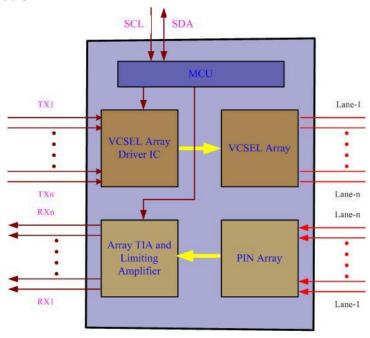


Figure 1. Module Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.3	3.6	V
Input Voltage	Vin	-0.3	Vcc+0.3	V
Storage Temperature	Tst	-20	85	ōС
Case Operating Temperature	Тор	0	70	ōС
Humidity(non-condensing)	Rh	5	95	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Operating Case temperature	Tca	0		70	ōС
Data Rate Per Lane	fd		10.3	10.5	Gbps
Humidity	Rh	5		85	%
Power Dissipation	Pm			1.5	W

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential input impedance	Zin	90	100	110	ohm
Differential Output impedance	Zout	90	100	110	ohm
Differential input voltage amplitude	ΔVin	300		1100	mVp-p
Differential output voltage amplitude	ΔVout	500		800	mVp-p
Skew	Sw			300	ps
Bit Error Rate	BER			E-12	
Input Logic Level High	VIH	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	VOH	VCC-0.5		VCC	V
Output Logic Level Low	VOL	0		0.4	V

Note:

- 1. BER=10^-12; PRBS 2^31-1@10.3125Gbps.
- 2. Differential input voltage amplitude is measured between TxnP and TxnN.
- 3. Differential output voltage amplitude is measured between RxnP and RxnN.

Optical Characteristics

Table 3 - Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
Transmitter								
Centre Wavelength	λ_{C}	840	850	860	nm	-		
RMS spectral width	Δλ	-	-	0.65	nm	-		
Average launch power, each lane	Pout	-7.5	-	2.5	dBm	-		
Difference in launch power between any two lanes (OMA)				4	dB	-		
Extinction Ratio	ER	3	-	-	dB	-		
Peak power, each lane				4	dBm	-		
transmitter and dispersion penalty (TDP), each lane	TDP			3.5	dB	-		
Average launch power of OFF transmitter, each lane				-30	dB	-		
Eye Mask coordinates: X1, X2, X3, Y1, Y2, Y3			FICATION VALUES , 0.43, 0.27, 0.35,			Hit Ratio = 5x10-5		
		Receive	r					
Centre Wavelength	λ_{C}	840	850	860	nm	-		
Stressed receiver sensitivity in OMA				-5.4	dBm	1		
Maximum Average power at receiver , each lane				2.4	dBm	-		
Minimum Average power at receiver, each lane				-9.5	dBm			

Datasheet dB -12 Receiver Reflectance Peak power, each lane 4 dBm -30 LOS Assert dBm LOS De-Assert - OMA -7.5 dBm 0.5 LOS Hysteresis dB

Note: Measured with conformance test signal at TP3 for BER = 10e-12

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	LVCMOS-I	SCL	2-wire Serial interface clock	2
12	LVCMOS-I/O	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted data output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	
28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board	2
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	2

GND Module Ground CML-I Tx3+ Transmitter non-inverted data input CML-I Tx3- Transmitter inverted data input GND Module Ground CML-I Tx1+ Transmitter non-inverted data input CML-I Tx1- Transmitter inverted data input GND Module Ground	۰				
CML-I Tx3- Transmitter inverted data input GND Module Ground CML-I Tx1+ Transmitter non-inverted data input CML-I Tx1- Transmitter inverted data input			GND	Module Ground	
5 GND Module Ground 6 CML-I Tx1+ Transmitter non-inverted data input 7 CML-I Tx1- Transmitter inverted data input	3	CML-I	Tx3+	Transmitter non-inverted data input	
6 CML-I Tx1+ Transmitter non-inverted data input 7 CML-I Tx1- Transmitter inverted data input	34	CML-I	Tx3-	Transmitter inverted data input	
7 CML-I Tx1- Transmitter inverted data input	35		GND	Module Ground	
	36	CML-I	Tx1+	Transmitter non-inverted data input	
8 GND Module Ground	37	CML-I	Tx1-	Transmitter inverted data input	
	38		GND	Module Ground	

Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector; should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.

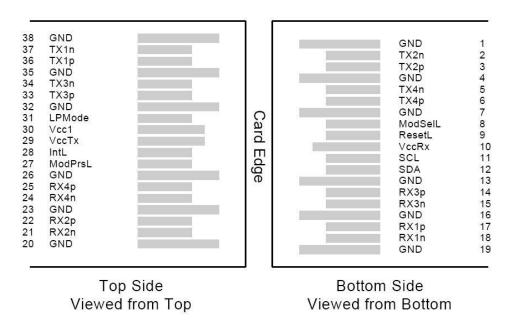


Figure 2. Electrical Pin-out Details

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communicationcommands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. Whenthe ModSelL is "High", the module will not respond to any 2-wire interface communication from the host.ModSelL has an internal pull-up in the module.

ResetL Pin

Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

LPMode Pin

Sourcelight QSFP+ SR4 operates in the low power mode (less than 1.5 W power consumption). This pin active high will decrease power consumption to less than 1W.

ModPrsL Pin

ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to thehost system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin isan open collector output and must be pulled up to Vcc on the host board.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 3.

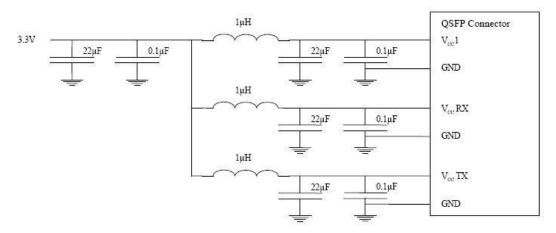
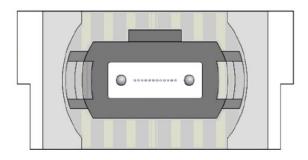



Figure 3. Host Board Power Supply Filtering

Optical Interface Lanes and Assignment

The optical interface port is a male MPO connector .The four fiber positions on the left as shown in Figure 4, with the key up, are used for the optical transmit signals (Channel 1 through 4). The fiber positions on the right are used for the optical receive signals (Channel 4 through 1). The central four fibers are physically present.

Transmit Channels: 1 2 3 4
Unused positions: x x x x
Receive Channels: 4 3 2 1

Figure 4. Optical Receptacle and Channel Orientation

Timing for Soft Control and Status Functions

Parameter	Symbol	Max	Unit	Conditions
Initialization Time	t_init	2000	ms	Time from power on ¹ , hot plug or rising edge of Reset until the module is fully functional ²
Reset Init Assert Time	t_reset_init	2	μs	A Reset is generated by a low level longer than the minimum reset pulse time present on the ResetL pin.
Serial Bus Hardware Ready Time	t_serial	2000	ms	Time from power on 1 until module responds to data transmission over the 2-wire serial bus
Monitor Data Ready Time	t_data	2000	ms	Time from power on ¹ to data not ready, bit 0 of Byte 2, deasserted and IntL asserted
Reset Assert Time	t_reset	2000	ms	Time from rising edge on the ResetL pin until the module is fully functional ²
LPMode Assert Time	ton_LPMode	100	μs	Time from assertion of LPMode (Vin:LPMode = Vih) until module power consumption enters lower Power Level
IntL Assert Time	ton_IntL	200	ms	Time from occurrence of condition triggering IntL until Vout:IntL = Vol
IntL Deassert Time	toff_IntL	500	μs	Time from clear on read ³ operation of associated flag until Vout:IntL = Voh. This includes deassert times for Rx LOS, Tx Fault and other flag bits.
Rx LOS Assert Time	ton_los	100	ms	Time from Rx LOS state to Rx LOS bit set and IntL asserted
Tx Fault Assert Time	ton_Txfault	200	ms	Time from Tx Fault state to Tx Fault bit set and IntL asserted
Flag Assert Time	ton_flag	200	ms	Time from occurrence of condition triggering flag to associated flag bit set and IntL asserted
Mask Assert Time	ton_mask	100	ms	Time from mask bit set ⁴ until associated IntL assertion is inhibited
Mask Deassert Time	toff_mask	100	ms	Time from mask bit cleared ⁴ until associated IntlL operation resumes
ModSelL Assert Time	ton_ModSelL	100	μs	Time from assertion of ModSelL until module responds to data transmission over the 2-wire serial bus
ModSelL Deassert Time	toff_ModSelL	100	μs	Time from deassertion of ModSelL until the module does not respond to data transmission over the 2-wire serial bus
Power_over-ride or Power-set Assert Time	ton_Pdown	100	ms	Time from P_Down bit set ⁴ until module power consumption enters lower Power Level
Power_over-ride or Power-set Deassert Time	toff_Pdown	300	ms	Time from P_Down bit cleared ⁴ until the module is fully functional3

Note:

- 1. Power on is defined as the instant when supply voltages reach and remain at or above the minimum specified value.
- 2. Fully functional is defined as IntL asserted due to data not ready bit, bit 0 byte 2 deasserted.
- 3. Measured from falling clock edge after stop bit of read transaction.
- 4. Measured from falling clock edge after stop bit of write transaction.

Mechanical Dimensions

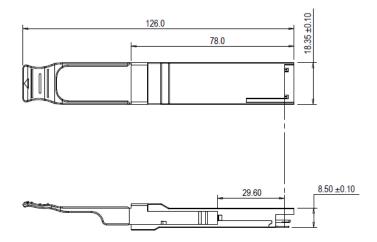


Figure 5. Mechanical Specifications

References

- 1. SFF-8436 QSFP+
- 2. Ethernet 40GBASE-SR4

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to sales@sourcelight.com.cn