100Gbps QSFP28 100M SR4 MMF

SLQS28-100G-SR4

Overview

This product is a parallel 100Gb/s Quad Small Form-factor Pluggable (QSFP28) optical module. It provides increased port density and total system cost savings. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 25Gb/s operation for an aggregate data rate of 100Gb/s on 100 meters of OM4 multi-mode fiber.

An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP28 module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an MSA-compliant 38-pin edge type connector.

Features

- ◆ 4 independent full-duplex channels
- Up to 28Gb/s data rate per channel
- QSFP28 MSA compliant
- Up to 100m OM4 MMF transmission
- Operating case temperature: 0 to 70^oC
- Single 3.3V power supply
- Maximum power consumption 3.5W
- MTP/MPO optical connector
- ♦ RoHS-6 compliant

Applications

- Rack to Rack
- Data Center
- ♦ Infiniband QDR, DDR and SDR
- 100G Ethernet

Ordering Information

Part Number	Product Description
SLQS28-100G-SR4	100G QSFP28 SR4 100m on OM4 MMF

www.sourcelight.com.cn

Shenzhen Sourcelight Technology Co., Ltd. Tel: +86-755-81481986 Email: sales@sourcelight.com.cn

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc-Tx/Vcc-Rx/Vcc1	-0.5	3.6	V
Storage Temperature Range	T _{STG}	-40	+85	°C
Maximum Average Input Optical Power per lane (Damage Threshold)	P _{IN}	3.4		dBm
Relative Humidity	RH	Oto	85% (non-conder	nsing)

Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	3.1	3.5	V
Operating Case temperature	T _{CASE}	0	70	°C
Power Consumption	P _{DISS}		3.5	W
Link Length(OM3)	Μ		70	m
Link Length(OM4)	Μ		100	m

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Units	Notes
		Genera	I			
Power Consumption				3.5	w	
Supply Current	Icc			1060	Ma	
Transceiver Power-on Initialization Time				2000	ms	1
Transmitter (each Lane)						
Single Ended Input Voltage Tolerance (Note2)		-0.3		3.6		
AC Common Mode Input Voltage Tolerance		15			mV	RMS
Differential Input Voltage Swing Threshold		50			mVpp	LOSA Threshold
Differential Input Voltage Swing	Vin,pp	180		1000	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Total Jitter				0.4	UI	
Deterministic Jitter				0.15	UI	

www.sourcelight.com.cn

Shenzhen Sourcelight Technology Co., Ltd.

Tel: +86-755-81481986 Email: sales@sourcelight.com.cn

Receiver (each Lane)									
Single Ended Output Voltage		-0.3		4	V				
AC Common Mode Output Voltage				7.5	mV	RMS			
Differential Output Voltage Swing	Vout,pp	300		900	mVpp				
Differential Output Impedance	Zout	90	100	110	Ohm				
Total Jitter				0.3	UI				
Deterministic Jitter				0.15	UI				

Notes:

1. Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.

2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes			
	Transm	itter							
Center Wavelength	λ_{C}	840	850	860	nm				
RMS Spectral Width	Δλrms			0.6	nm				
Average Launch Power, each Lane	P _{AVG}	-8.4		2.4	dBm				
Optical Modulation Amplitude(OMA), each Lane	P _{OMA}	-6.4		3.0	dBm	1			
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			4.0	dB				
Launch Power in OMA minus TDEC, each Lane		-7.3			dBm				
Transmitter and Dispersion Eye Closure (TDEC), each Lane				4.3	dB				
Extinction Ratio	ER	2.0			dB				
Optical Return Loss Tolerance	TOL			12	dB				
Encircled Flux		≥	86% at 19um						
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}, 5×10–5 hits/sample		{0.3,0.3	8,0.45,0.35,0.4	41,0.5}		2			
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm				
Receiver									
Center Wavelength	λς	840	850	860	nm				
Damage Threshold, each Lane	THd	3.4			dBm	3			

www.sourcelight.com.cn

Shenzhen Sourcelight Technology Co., Ltd.

Tel: +86-755-81481986 Email: sales@sourcelight.com.cn

Average Receive Power, each Lane		-10.3		2.4	dBm	
Receiver Reflectance	RR			-12	dB	
Receive Power (OMA), each Lane				3.0	dBm	
Receiver Sensitivity (OMA), each Lane	SEN			-9.2	dBm	
Stressed Receiver Sensitivity (OMA), each Lane				-5.2	dBm	4
LOS Assert	LOSA	-30			dBm	
LOS Deassert	LOSD			-12	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Conditions of Stress Receiver Sensitivity Test (Note 5):	:					
Stressed Eye Closure (SEC), Lane under Test			4.3		dB	
Stressed Eye J2 Jitter, Lane under Test			0.39		UI	
Stressed Eye J4 Jitter, Lane under Test				0.53	UI	
OMA of each Aggressor Lane			3		dBm	
Stressed receiver eye mask definition {X1, X2, X3, Y1, Y2, Y3}		{0.28,0	.5,0.5,0.33,0.3	3,0.4}		
Stressed Receiver Sensitivity (OMA), each Lane				-5.2	dBm	4

Notes:

- 1. Even if the TDP < 0.9 dB, the OMA min must exceed the minimum value specified here.
- 2. See Figure 2 below.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER = 1×10^{-12} .
- 5. Stressed eye closure and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Functional Block Diagram

Figure1. Functional Block Diagram

Your Total Optical Solution

Datasheet

Recommended Host Board Power Supply Filtering

Figure2. QSFP voltage supply and filtering scheme

QSFP Edge Connector and Pinout Description

The electrical interface to the transceiver is a 38-pin edge connector. The 38-pins provide high speed data, low speed monitoring and control signals, I²C communication, power and ground connectivity. The top and bottom views of the connector are provided below, as well as a table outlining the contact numbering, symbol and full description.

Figure3. QSFP Edge Connector and Pinout Description

www.sourcelight.com.cn

Shenzhen Sourcelight Technology Co., Ltd. Tel: +86-755-81481986 Email: sales@sourcelight.com.cn

QSFP Transceiver Pinout

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Ground	1
2	CML-I	Tx2n	Transmitted Inverted Data Input	
3	CML-I	Tx2p	Transmitted Non-inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitted Inverted Data Input	
6	CML-I	Tx4p	Transmitted Non-inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModSeiL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3 VDC Receiver Power Supply	2
11	LVCMOS-I/O	SCL	Serial Clock for I ² C Interface	
12	LVCMOS-I/O	SDA	Serial Data for I ² C Interface	
13		GND	Ground	
14	CML-0	RX3p	Receiver Non-inverted Data Output	
15	CML-0	RX3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	RX1p	Receiver Non-inverted Data Output	
18	CML-0	RX1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	RX2n	Receiver Inverted Data Output	
22	CML-O	RX2p	Receiver Non-inverted Data Output	
23		GND	Ground	1
24	CML-O	RX4n	Receiver Inverted Data Output	1
25	CML-0	RX4p	Receiver Non-inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		Vcc Tx	+3.3 VDC Transmitter Power Supply	2
30		Vcc1	+3.3 VDC Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	ТХ3р	Transmitted Non-inverted Data Input	
34	CML-I	TX3n	Transmitted Inverted Data Input	
35		GND	Ground	1

www.sourcelight.com.cn

Shenzhen Sourcelight Technology Co., Ltd. Tel: +86-755-81481986 Email: sales@sourcelight.com.cn

36	CML-I	TX1p	Transmitted Non-inverted Data Input	
37	CML-I	TX1n	Transmitted Inverted Data Input	
38		GND	Ground	1

Notes:

- 1. GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 4 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Optical Interface Lanes and Assignment

Figure 4 shows the orientation of the multi-mode fiber facets of the optical connector. Table 1 provides the lane assignment.

Figure4. Outside View of the QSFP28 Module MPO

Lane Assignment

Fiber#	1	2	3	4	5,6,7,8	9	10	11	12
Lane Assignment	RX0	RX1	RX2	RX3	Not used	TX3	TX2	TX1	TX0

Mechanical Dimensions

Figure5. Mechanical Specifications

ESD

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to <u>sales@sourcelight.com.cn</u>