SFP 155Mbps 1310nm 20Km

SLS-1531-20-X

Overview

The SFP transceivers are high performance, cost effective modules supporting 155Mbps data-rate and 20km transmission.

The transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Features

- ♦ Up to 155Mbps data-rate
- ♦ 1310nm FP laser and PIN photo detector for 20km
- ◆ Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitoring:
 Internal Calibration or External Calibration
- ♦ Compatible with RoHS

- ♦ +3.3V single power supply
- ♦ Operating case temperature:

Standard: 0 to +70°C Industrial: -40 to +85°C

Applications

- ♦ SDH STM-1, I-1
- ♦ Sonet OC-3,SR1
- ♦ Fast Ethernet
- ♦ Other Optical Links

Ordering Information

Part Number	Product Description
SLS-1531-20	SFP 155Mbps, 1310nm, 20km, 0ºC ~ +70ºC
SLS-1531-20-D	SFP 155Mbps, 1310nm, 20km, 0°C ~ +70°C with DDMI

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter		Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Standard	Тс	0		+70	°C
Operating Case Temperature	Industrial		-40		+85	°C
Power Supply Voltage		Vcc	3.13	3.3	3.47	V
Power Supply Current		lcc			300	mA
Data Rate				155		Mbps

Optical and Electrical Characteristics

Parai	meter	Symbol	Min	Typical	Max	Unit	Notes
	Transmitter						
Centre Wavelength		λς	1260	1310	1360	nm	
Spectral \	Width (RMS)	σ			4	nm	
Average C	Output Power	Pout	-14		-8	dBm	1
Extinc	tion Ratio	ER	9			dB	
Optical R	ise/Fall Time	t _r /t _f			1.3	ns	
Data Input Sv	Data Input Swing Differential		400		1800	mV	2
Input Differe	ntial Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
TA DISable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
Normal			0		0.8	V	
	Receiver						
Centre \	Centre Wavelength		1260		1580	nm	

Receiver Sensitivity			-32	dBm	3
Receiver Overload		-3		dBm	3
LOS De-Assert	LOS_D		-34	dBm	
LOS Assert	LOS _A	-45		dBm	
LOS Hysteresis		1	4	dB	
Data Output Swing Differential	Vout	370	1800	mV	4
LOC	High	2.0	Vcc	V	
LOS	Low		0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated. 3. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, BER $\le 1 \times 10^{-10}$
- 4. Internally AC-coupled.

Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V_{H}	2		Vcc	V
MOD_DEF (0:2)-Low	V_L			0.8	V

Timing and Electrical

Pin Definitions

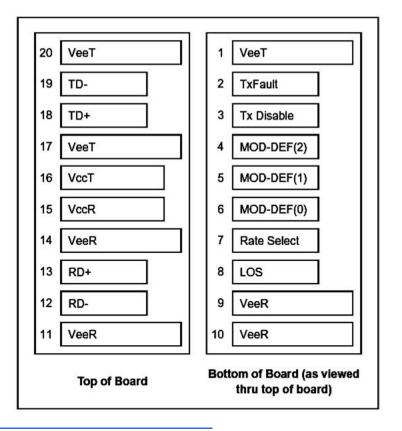


Figure 1: Pin Definitions

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V_{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V_{EER}	Receiver ground	1	
10	V_{EER}	Receiver ground	1	
11	V_{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V_{EER}	Receiver ground	1	

15	V_{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V_{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k^{\sim}10k\Omega$ resistor. Its states are:

 $\begin{array}{lll} \mbox{Low (0 to 0.8V)} & : \mbox{Transmitter on} \\ \mbox{(>0.8V, < 2.0V)} & : \mbox{Undefined} \\ \end{array}$

High (2.0 to 3.465V) : Transmitter Disabled Open : Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present
 - Mod-Def 1 is the clock line of two wire serial interface for serial ID
 - Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) LOS is an open collector output, which should be pulled up with a $4.7k^{\sim}10k\Omega$ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

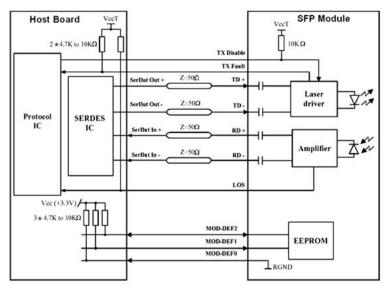


Figure 2: Recommended Interface Circuit

Mechanical Dimensions

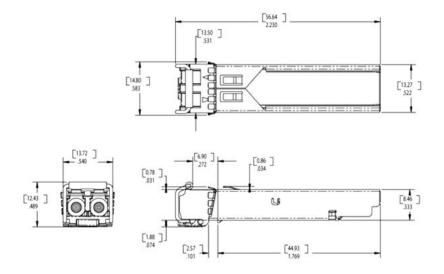


Figure 3: Mechanical Dimensions

References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 2. Telcordia GR-253-CORE and ITU-T G.957 Specifications.

Shenzhen Sourcelight Technology Co., Ltd

Sourcelight Technology reserves the right to make changes to or discontinue any optical link product or service identified in this document without notice in order to improve design and/or performance. If you have any question regarding this specification sheet, please contact our sales representative or send email to sales@sourcelight.com.cn